metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chloridotetrakis(1-ethyl-1*H*-imidazole- κN^3)copper(II) chloride monohydrate

Fa-Qian Liu,* Wen-Li Liu, Wei Li, Rong-Xun Li and Guang-Ye Liu

Key Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: gdplastics@163.com

Received 15 August 2007; accepted 26 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.056; wR factor = 0.140; data-to-parameter ratio = 9.3.

The title compound, $[CuCl(C_5H_8N_2)_4]Cl\cdotH_2O$, consists of a discrete $[CuCl(Eim)_4]^+$ cation (Eim is 1-ethyl-1*H*-imidazole), one Cl⁻ anion and one water molecule. The Cu^{II} ion adopts a distorted square-pyramidal geometry. The basal coordination positions are occupied by the N atoms of the Eim ligands and the apical position is occupied by a Cl⁻ anion. In the crystal structure, ions and water molecules form three-dimensional hydrogen-bond networks which stabilize the structure.

Related literature

For related literature, see: Jian *et al.* (2004); Otieno *et al.* (2001).

Experimental

Crystal data [CuCl(C₅H₈N₂)₄]Cl·H₂O $M_r = 537.00$

Monoclinic, Cca = 20.304 (4) Å

b = 8.6090 (17) Å
c = 17.364 (4) Å
$\beta = 119.65 \ (3)^{\circ}$
$V = 2637.8 (12) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART 1K CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\rm min} = 0.816, T_{\rm max} = 0.902$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.140$ S = 0.952811 reflections 302 parameters 6 restraints

Mo $K\alpha$ radiation $\mu = 1.06 \text{ mm}^{-1}$ T = 293 (2) K $0.20 \times 0.10 \times 0.10 \text{ mm}$

5104 measured reflections 2811 independent reflections 2013 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.77 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.48 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), with 212 Friedel pairs Flack parameter: 0.09 (3)

Table 1	
Hydrogen-bond geometr	y (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1WA····Cl2 ⁱ	0.84 (10)	2.47 (11)	3.206 (11)	147
$O1W - H1WB \cdot \cdot \cdot Cl1$	0.85 (10)	2.39 (9)	3.183 (9)	156 (9)
$C6-H6A\cdots Cl2$	0.93	2.61	3.401 (5)	143
$C7-H7A\cdots Cl2^{ii}$	0.93	2.81	3.595 (6)	143
C9−H9B···Cl1 ⁱⁱⁱ	0.97	2.72	3.598 (9)	151
$C11 - H11A \cdots O1W^{iii}$	0.93	2.47	3.361 (9)	161
$C19-H19B\cdots Cl1^{iv}$	0.97	2.77	3.713 (12)	162

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x, y - 1, z; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) x, y + 1, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (Y2006B12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2282).

References

Bruker (2001). *SMART* (Version 5.628) and *SAINT* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Jian, F.-F., Tong, Y.-P., Xiao, H.-L., Wang, Q.-X. & Jiao, K. (2004). Chin. J. Struct. Chem. 23, 979–984.
- Otieno, T., Hatfield, M. J., Asher, S. A., McMulin, A. I., Patrick, B. O. & Parkin, S. (2001). Synth. React. Inorg. Met.-Org. Chem. **31**, 1587–1598.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2454 [doi:10.1107/S1600536807041864]

Chloridotetrakis(1-ethyl-1*H*-imidazole- κN^3)copper(II) chloride monohydrate

F.-Q. Liu, W.-L. Liu, W. Li, R.-X. Li and G.-Y. Liu

Comment

In title compound, the crystal structure consists of discrete $CuCl(Eim)_4^+$ cations, Cl^- anions and water molecules. The Cu^{II} ion adopts a distorted square pyramidal geometry. The basal coordination positions are occupied by the N atoms of the Eim ligands with bond lengths ranging from 1.960 (7) to 2.075 (8) Å, and the apical position by a Cl anion [Cu-Cl = 2.730 (3) Å], while another chloride anion in the general position balances the charges. All these values agree well with two polymorphism complexes [CuCl(im)_4Cl](im is 1*H*-imidazole) (Otieno *et al.*, 2001; Jian *et al.*, 2004). In the crystal, the title compound form three-dimensional hydrogen bond networks to stabilize the structure.

Experimental

The title compound was prepared by the reaction of 1-ethylimidazole (1.92 g, 20 mmol) with $CuCl_2 \cdot 2H_2O$ (0.68 g, 5 mmol) by means of hydrothermal synthesis in a stainless-steel reactor with Teflon liner at 383 K for 24 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms bonded to O were located in a difference map and their coordinates were refined with $U_{iso}(H)=1.2U_{eq}(O)$. The other H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their attached atoms $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Chloridotetrakis(1-ethyl-1*H*-imidazole- κN^3)copper(II) chloride monohydrate

 $F_{000} = 1124$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.1 - 26.0^{\circ}$

 $\mu = 1.06 \text{ mm}^{-1}$ T = 293 (2) K

 $0.20\times0.10\times0.10~mm$

Block, blue

 $D_{\rm x} = 1.352 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 3489 reflections

Crystal data

[CuCl(C₅H₈N₂)₄]Cl·H₂O $M_r = 537.00$ Monoclinic, Cc Hall symbol: C -2yc a = 20.304 (4) Å b = 8.6090 (17) Å c = 17.364 (4) Å $\beta = 119.65$ (3)° V = 2637.8 (12) Å³ Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer	2811 independent reflections
Radiation source: fine-focus sealed tube	2013 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
thin–slice ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -21 \rightarrow 25$
$T_{\min} = 0.816, \ T_{\max} = 0.902$	$k = 0 \rightarrow 10$
5104 measured reflections	$l = -21 \rightarrow 0$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.056$	$w = 1/[\sigma^2(F_o^2) + (0.0852P)^2 + 0.8132P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.140$	$(\Delta/\sigma)_{\rm max} = 0.007$
<i>S</i> = 0.95	$\Delta \rho_{max} = 0.77 \text{ e } \text{\AA}^{-3}$
2811 reflections	$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$
302 parameters	Extinction correction: SHELXTL (Sheldrick, 2001), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
6 restraints	Extinction coefficient: 0.0042 (6)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with 212 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.09 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.45278 (5)	0.93673 (12)	-0.00119 (6)	0.0418 (3)
C11	0.33081 (13)	0.7876 (3)	-0.13405 (17)	0.0541 (7)
C12	0.6087 (2)	1.1185 (3)	0.1607 (2)	0.0711 (9)
O1W	0.2390 (5)	0.6153 (12)	-0.3198 (5)	0.074 (2)
N1	0.3969 (4)	0.9903 (9)	0.0603 (5)	0.0382 (16)
N2	0.3177 (5)	0.9711 (11)	0.1131 (6)	0.054 (2)
N3	0.4954 (4)	0.7458 (8)	0.0708 (5)	0.0396 (17)
N4	0.5781 (4)	0.5894 (8)	0.1720 (4)	0.0358 (16)
N5	0.5177 (4)	0.9008 (10)	-0.0617 (5)	0.0402 (18)
N6	0.6119 (4)	0.8808 (10)	-0.0866 (6)	0.050 (2)
N7	0.4203 (4)	1.1413 (8)	-0.0680 (5)	0.0379 (17)
N8	0.4220 (4)	1.3575 (8)	-0.1323 (5)	0.0427 (18)
C1	0.3511 (2)	0.8971 (3)	0.0729 (2)	0.059 (3)
H1A	0.3429	0.7932	0.0561	0.070*
C2	0.3413 (2)	1.1234 (3)	0.1246 (2)	0.060 (3)
H2A	0.3266	1.2036	0.1488	0.073*
C3	0.3899 (2)	1.1316 (3)	0.0935 (2)	0.054 (3)
H3A	0.4158	1.2212	0.0942	0.065*
C4	0.2617 (2)	0.9038 (3)	0.1347 (2)	0.084 (4)
H4A	0.2658	0.7915	0.1361	0.100*
H4B	0.2731	0.9385	0.1932	0.100*
C5	0.1842 (2)	0.948 (2)	0.0704 (2)	0.103 (6)
H5A	0.1494	0.8758	0.0729	0.154*
H5B	0.1782	0.9481	0.0120	0.154*
H5C	0.1741	1.0506	0.0841	0.154*
C6	0.5594 (5)	0.7375 (3)	0.1456 (2)	0.045 (2)
H6A	0.5883	0.8232	0.1765	0.054*
C7	0.5227 (5)	0.4971 (3)	0.1093 (6)	0.0364 (18)
H7A	0.5202	0.3893	0.1092	0.044*
C8	0.4722 (5)	0.5951 (3)	0.0473 (6)	0.040 (2)
H8A	0.4282	0.5649	-0.0036	0.048*
C9	0.6465 (5)	0.5343 (3)	0.2516 (2)	0.052 (2)
H9A	0.6568	0.4284	0.2415	0.063*

H9B	0.6892	0.5977	0.2604	0.063*
C10	0.6412 (2)	0.5384 (3)	0.3314 (2)	0.083 (4)
H10A	0.6893	0.5115	0.3812	0.125*
H10B	0.6035	0.4655	0.3264	0.125*
H10C	0.6272	0.6410	0.3395	0.125*
C11	0.5895 (5)	0.8847 (3)	-0.0262 (2)	0.047 (2)
H11A	0.6222	0.8768	0.0345	0.056*
C12	0.5497 (2)	0.8989 (3)	-0.1665 (2)	0.056 (3)
H12A	0.5476	0.9031	-0.2212	0.067*
C13	0.4905 (2)	0.9099 (3)	-0.1509 (2)	0.054 (3)
H13A	0.4399	0.9216	-0.1939	0.065*
C14	0.6896 (2)	0.8680 (3)	-0.0699 (2)	0.084 (4)
H14A	0.6883	0.8400	-0.1248	0.101*
H14B	0.7148	0.7847	-0.0278	0.101*
C15	0.7343 (2)	1.0112 (3)	-0.0352 (2)	0.139 (8)
H15A	0.7862	0.9907	-0.0180	0.208*
H15B	0.7311	1.0466	0.0153	0.208*
H15C	0.7146	1.0898	-0.0803	0.208*
C16	0.4634 (5)	1.2435 (3)	-0.0789 (6)	0.042 (2)
H16A	0.5158	1.2366	-0.0526	0.051*
C17	0.3478 (2)	1.3303 (3)	-0.1580 (3)	0.050(2)
H17A	0.3062	1.3907	-0.1955	0.059*
C18	0.3478 (5)	1.1944 (3)	-0.1164 (6)	0.046 (2)
H18A	0.3051	1.1464	-0.1206	0.056*
C19	0.4487 (7)	1.4891 (3)	-0.1631 (7)	0.057 (3)
H19A	0.5032	1.4987	-0.1261	0.069*
H19B	0.4257	1.5840	-0.1572	0.069*
C20	0.4292 (2)	1.4693 (3)	-0.2577 (3)	0.077 (4)
H20A	0.4537	1.5490	-0.2732	0.115*
H20B	0.3753	1.4770	-0.2955	0.115*
H20C	0.4462	1.3692	-0.2653	0.115*
H1WB	0.275 (5)	0.649 (18)	-0.271 (4)	0.11 (6)*
H1WA	0.202 (4)	0.587 (13)	-0.314 (7)	0.07 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0530 (6)	0.0326 (5)	0.0509 (6)	0.0144 (6)	0.0343 (5)	0.0132 (6)
Cl1	0.0377 (12)	0.0500 (15)	0.0566 (15)	0.0011 (11)	0.0096 (11)	-0.0051 (12)
Cl2	0.108 (2)	0.0346 (13)	0.088 (2)	0.0124 (14)	0.0623 (19)	0.0071 (13)
O1W	0.052 (5)	0.105 (7)	0.056 (5)	-0.017 (5)	0.019 (4)	0.000 (5)
N1	0.040 (4)	0.039 (4)	0.045 (4)	0.003 (4)	0.029 (3)	0.010 (4)
N2	0.058 (5)	0.069 (6)	0.053 (5)	0.013 (5)	0.043 (5)	0.007 (5)
N3	0.043 (4)	0.037 (4)	0.037 (4)	0.002 (3)	0.018 (4)	-0.001 (3)
N4	0.035 (4)	0.032 (4)	0.034 (4)	-0.002 (3)	0.012 (3)	0.004 (3)
N5	0.041 (4)	0.044 (4)	0.037 (4)	0.014 (4)	0.021 (4)	-0.001 (4)
N6	0.041 (4)	0.053 (5)	0.055 (5)	0.003 (4)	0.024 (4)	-0.001 (4)
N7	0.040 (4)	0.031 (4)	0.047 (4)	0.005 (3)	0.025 (4)	0.002 (3)

N8	0.060 (5)	0.030 (4)	0.042 (4)	0.004 (3)	0.028 (4)	0.006 (3)
C1	0.072 (7)	0.048 (6)	0.073 (7)	0.009 (5)	0.050 (6)	0.018 (5)
C2	0.064 (6)	0.065 (7)	0.054 (6)	0.007 (6)	0.030 (6)	-0.015 (5)
C3	0.057 (6)	0.056 (6)	0.056 (6)	-0.015 (5)	0.033 (5)	-0.025 (5)
C4	0.109 (11)	0.079 (9)	0.107 (11)	0.011 (8)	0.088 (10)	0.024 (8)
C5	0.066 (9)	0.161 (19)	0.086 (10)	-0.015 (9)	0.042 (8)	0.005 (10)
C6	0.036 (5)	0.035 (5)	0.057 (6)	-0.002 (4)	0.017 (5)	-0.010 (5)
C7	0.040 (4)	0.027 (4)	0.043 (5)	-0.001 (4)	0.021 (4)	-0.003 (4)
C8	0.043 (5)	0.041 (5)	0.028 (4)	-0.015 (4)	0.011 (4)	-0.011 (4)
C9	0.041 (5)	0.054 (6)	0.047 (6)	0.007 (4)	0.012 (4)	0.011 (5)
C10	0.062 (7)	0.124 (13)	0.048 (7)	0.017 (8)	0.016 (6)	0.026 (8)
C11	0.032 (5)	0.061 (6)	0.044 (5)	0.004 (4)	0.017 (4)	0.002 (5)
C12	0.075 (8)	0.053 (7)	0.046 (6)	0.008 (5)	0.036 (6)	0.001 (5)
C13	0.062 (6)	0.058 (6)	0.044 (5)	0.014 (5)	0.029 (5)	0.006 (5)
C14	0.081 (9)	0.082 (9)	0.113 (11)	0.000 (7)	0.066 (9)	0.001 (8)
C15	0.085 (11)	0.106 (12)	0.24 (3)	-0.042 (10)	0.096 (15)	-0.025 (17)
C16	0.038 (5)	0.046 (5)	0.044 (5)	0.009 (4)	0.021 (4)	0.011 (4)
C17	0.047 (5)	0.045 (6)	0.052 (6)	0.014 (5)	0.021 (5)	0.010 (5)
C18	0.038 (5)	0.046 (5)	0.057 (6)	0.003 (4)	0.025 (5)	0.006 (5)
C19	0.089 (8)	0.036 (5)	0.070 (7)	0.000 (5)	0.058 (6)	0.007 (5)
C20	0.094 (9)	0.079 (9)	0.080 (8)	0.013 (7)	0.060 (8)	0.028 (7)

Geometric parameters (Å, °)

Cu1—N1	1.960 (7)	C5—H5A	0.9600
Cu1—N3	1.986 (7)	С5—Н5В	0.9600
Cu1—N7	2.031 (7)	C5—H5C	0.9600
Cu1—N5	2.075 (8)	С6—Н6А	0.9300
Cu1—Cl1	2.730 (3)	С7—С8	1.353 (13)
O1W—H1WB	0.85 (10)	С7—Н7А	0.9300
O1W—H1WA	0.84 (10)	C8—H8A	0.9300
N1—C1	1.327 (13)	C9—C10	1.442 (7)
N1—C3	1.383 (13)	С9—Н9А	0.9700
N2—C1	1.348 (13)	С9—Н9В	0.9700
N2—C2	1.377 (15)	C10—H10A	0.9600
N2—C4	1.480 (14)	C10—H10B	0.9600
N3—C6	1.308 (12)	C10—H10C	0.9600
N3—C8	1.372 (11)	C11—H11A	0.9300
N4—C6	1.345 (11)	C12—C13	1.360 (6)
N4—C7	1.368 (11)	C12—H12A	0.9300
N4—C9	1.471 (12)	C13—H13A	0.9300
N5—C11	1.279 (11)	C14—C15	1.472 (4)
N5—C13	1.366 (13)	C14—H14A	0.9700
N6—C11	1.334 (13)	C14—H14B	0.9700
N6—C12	1.346 (14)	C15—H15A	0.9600
N6—C14	1.459 (14)	C15—H15B	0.9600
N7—C16	1.318 (11)	C15—H15C	0.9600
N7—C18	1.364 (11)	C16—H16A	0.9300
N8—C16	1.326 (11)	C17—C18	1.375 (6)

N8—C17	1.363 (12)	C17—H17A	0.9300
N8—C19	1.465 (12)	C18—H18A	0.9300
C1—H1A	0.9300	C19—C20	1.499 (17)
C2—C3	1.341 (6)	С19—Н19А	0.9700
C2—H2A	0.9300	C19—H19B	0.9700
С3—НЗА	0.9300	C20—H20A	0.9600
C4—C5	1.459 (7)	C20—H20B	0.9600
C4—H4A	0.9700	C20—H20C	0.9600
C4—H4B	0.9700		
N1—Cu1—N3	92.4 (3)	С8—С7—Н7А	127.1
N1—Cu1—N7	89.8 (3)	N4—C7—H7A	127.1
N3—Cu1—N7	174.0 (3)	C7—C8—N3	109.8 (7)
N1—Cu1—N5	174.3 (4)	С7—С8—Н8А	125.1
N3—Cu1—N5	90.4 (3)	N3—C8—H8A	125.1
N7—Cu1—N5	87.0 (3)	C10—C9—N4	114.2 (9)
N1—Cu1—Cl1	92.5 (2)	С10—С9—Н9А	108.7
N3—Cu1—Cl1	94.2 (2)	N4—C9—H9A	108.7
N7—Cu1—Cl1	91.3 (2)	С10—С9—Н9В	108.7
N5—Cu1—Cl1	92.3 (2)	N4—C9—H9B	108.7
H1WB—O1W—H1WA	111 (10)	Н9А—С9—Н9В	107.6
C1—N1—C3	103.8 (8)	С9—С10—Н10А	109.5
C1—N1—Cu1	126.2 (7)	С9—С10—Н10В	109.5
C3—N1—Cu1	129.8 (6)	H10A—C10—H10B	109.5
C1—N2—C2	107.4 (9)	С9—С10—Н10С	109.5
C1—N2—C4	126.3 (10)	H10A—C10—H10C	109.5
C2—N2—C4	126.2 (10)	H10B—C10—H10C	109.5
C6—N3—C8	105.7 (8)	N5-C11-N6	112.0 (9)
C6—N3—Cu1	125.4 (6)	N5—C11—H11A	124.0
C8—N3—Cu1	128.1 (6)	N6—C11—H11A	124.0
C6—N4—C7	107.3 (7)	N6-C12-C13	105.9 (9)
C6—N4—C9	127.0 (7)	N6-C12-H12A	127.0
C7—N4—C9	125.7 (7)	C13—C12—H12A	127.0
C11—N5—C13	106.1 (9)	C12—C13—N5	108.7 (9)
C11—N5—Cu1	129.0 (7)	С12—С13—Н13А	125.6
C13—N5—Cu1	124.4 (6)	N5—C13—H13A	125.6
C11—N6—C12	107.2 (8)	N6-C14-C15	113.9 (4)
C11—N6—C14	127.0 (10)	N6-C14-H14A	108.8
C12—N6—C14	125.7 (10)	C15—C14—H14A	108.8
C16—N7—C18	106.2 (8)	N6-C14-H14B	108.8
C16—N7—Cu1	127.6 (6)	C15—C14—H14B	108.8
C18—N7—Cu1	126.1 (6)	H14A—C14—H14B	107.7
C16—N8—C17	108.5 (8)	C14—C15—H15A	109.5
C16—N8—C19	127.3 (8)	C14—C15—H15B	109.5
C17—N8—C19	124.1 (8)	H15A—C15—H15B	109.5
N1—C1—N2	111.9 (9)	C14—C15—H15C	109.5
N1—C1—H1A	124.1	H15A—C15—H15C	109.5
N2—C1—H1A	124.1	H15B—C15—H15C	109.5
C3—C2—N2	105.3 (9)	N7—C16—N8	111.0 (8)
C3—C2—H2A	127.4	N7—C16—H16A	124.5

N2—C2—H2A	127.4	N8—C16—H16A	124.5
C2—C3—N1	111.7 (4)	N8—C17—C18	105.2 (8)
С2—С3—НЗА	124.2	N8—C17—H17A	127.4
N1—C3—H3A	124.2	С18—С17—Н17А	127.4
C5—C4—N2	112.1 (11)	N7—C18—C17	109.2 (8)
C5—C4—H4A	109.2	N7—C18—H18A	125.4
N2—C4—H4A	109.2	C17—C18—H18A	125.4
C5—C4—H4B	109.2	N8—C19—C20	111.5 (9)
N2—C4—H4B	109.2	N8—C19—H19A	109.3
H4A—C4—H4B	107.9	C20—C19—H19A	109.3
C4—C5—H5A	109.5	N8—C19—H19B	109.3
C4—C5—H5B	109.5	С20—С19—Н19В	109.3
H5A—C5—H5B	109.5	H19A—C19—H19B	108.0
C4—C5—H5C	109.5	C19—C20—H20A	109.5
H5A—C5—H5C	109.5	С19—С20—Н20В	109.5
H5B—C5—H5C	109.5	H20A-C20-H20B	109.5
N3—C6—N4	111.4 (8)	С19—С20—Н20С	109.5
N3—C6—H6A	124.3	H20A-C20-H20C	109.5
N4—C6—H6A	124.3	H20B-C20-H20C	109.5
C8—C7—N4	105.8 (7)		
N3—Cu1—N1—C1	-51.1 (9)	C2—N2—C4—C5	74.7 (17)
N7—Cu1—N1—C1	134.5 (9)	C8—N3—C6—N4	-0.7 (11)
Cl1—Cu1—N1—C1	43.2 (8)	Cu1—N3—C6—N4	-171.2 (6)
N3—Cu1—N1—C3	134.9 (8)	C7—N4—C6—N3	0.7 (11)
N7—Cu1—N1—C3	-39.5 (8)	C9—N4—C6—N3	178.8 (8)
Cl1—Cu1—N1—C3	-130.8 (8)	C6—N4—C7—C8	-0.3 (10)
N1—Cu1—N3—C6	-90.4 (8)	C9—N4—C7—C8	-178.4 (8)
N5—Cu1—N3—C6	84.6 (8)	N4—C7—C8—N3	-0.1 (10)
Cl1—Cu1—N3—C6	176.9 (7)	C6—N3—C8—C7	0.5 (11)
N1—Cu1—N3—C8	101.2 (8)	Cu1—N3—C8—C7	170.7 (6)
N5—Cu1—N3—C8	-83.8 (8)	C6—N4—C9—C10	83.2 (14)
Cl1—Cu1—N3—C8	8.5 (8)	C7—N4—C9—C10	-99.0 (13)
N3—Cu1—N5—C11	-55.9 (9)	C13—N5—C11—N6	-0.7 (12)
N7—Cu1—N5—C11	118.7 (9)	Cu1—N5—C11—N6	-173.1 (7)
Cl1—Cu1—N5—C11	-150.1 (9)	C12—N6—C11—N5	1.4 (13)
N3—Cu1—N5—C13	133.0 (8)	C14—N6—C11—N5	178.2 (10)
N7—Cu1—N5—C13	-52.4 (8)	C11-N6-C12-C13	-1.4 (12)
Cl1—Cu1—N5—C13	38.8 (8)	C14—N6—C12—C13	-178.3 (10)
N1—Cu1—N7—C16	131.7 (8)	N6-C12-C13-N5	1.0 (12)
N5—Cu1—N7—C16	-43.6 (8)	C11—N5—C13—C12	-0.2 (12)
Cl1—Cu1—N7—C16	-135.8 (8)	Cu1—N5—C13—C12	172.6 (7)
N1—Cu1—N7—C18	-53.5 (8)	C11—N6—C14—C15	-74 (2)
N5—Cu1—N7—C18	131.2 (8)	C12—N6—C14—C15	102.6 (18)
Cl1—Cu1—N7—C18	39.0 (8)	C18—N7—C16—N8	-0.7 (11)
C3—N1—C1—N2	-1.2 (12)	Cu1—N7—C16—N8	174.9 (6)
Cu1—N1—C1—N2	-176.4 (7)	C17—N8—C16—N7	0.3 (11)
C2—N2—C1—N1	2.2 (13)	C19—N8—C16—N7	-177.5 (8)
C4—N2—C1—N1	178.0 (10)	C16—N8—C17—C18	0.2 (11)
C1—N2—C2—C3	-2.2 (12)	C19—N8—C17—C18	178.2 (9)

C4—N2—C2—C3 N2—C2—C3—N1	-178.0 (11) 1.6 (13)	C16—N7—C18—C Cu1—N7—C18—C	C17	0.9 (11) -174.8 (6)
C1—N1—C3—C2	-0.3 (12)	N8—C17—C18—N	17	-0.7 (11)
Cu1—N1—C3—C2	174.7 (8)	C16—N8—C19—C	220	105.1 (12)
C1—N2—C4—C5	-100.3 (16)	C17—N8—C19—C	220	-72.4 (13)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1W—H1WA····Cl2 ⁱ	0.84 (10) 2.47 (11)	3.206 (11)	147
O1W—H1WB…Cl1	0.85 (10) 2.39 (9)	3.183 (9)	156 (9)
C6—H6A···Cl2	0.93	2.61	3.401 (5)	143
C7—H7A···Cl2 ⁱⁱ	0.93	2.81	3.595 (6)	143
C9—H9B…Cl1 ⁱⁱⁱ	0.97	2.72	3.598 (9)	151
C11—H11A····O1W ⁱⁱⁱ	0.93	2.47	3.361 (9)	161
C19—H19B…Cl1 ^{iv}	0.97	2.77	3.713 (12)	162

Symmetry codes: (i) x-1/2, -y+3/2, z-1/2; (ii) x, y-1, z; (iii) x+1/2, -y+3/2, z+1/2; (iv) x, y+1, z.

